The Express Law Enforcement Agency to Court Web Service enables the standard collection of citations from law enforcement agencies (LEAs) to populate court-level databases. This document will explain how to deploy the web service, how it can be integrated with a court's case management system (CMS), and how it can be used to simplify collecting citation data.

Hosting the Service

The web service, distributed as a standard Java .war (web archive) file, is a WSDL-based SOAP service built on Apache CXF and Tomcat. The service was developed in Tomcat, but can be deployed in any reasonable Java web container.

Before deploying the web service, some basic configuration needs to happen. Because the web service uses Hibernate and JPA for persistence, the datasource configuration file – /src/main/resources/data-config.xml – needs to be altered for your particular database. The “hibernate.dialect” property should be changed to a dialect of SQL supported by your database. “hibernate.show_sql” can be set to false to turn off SQL statement logging. “hibernate.hbm2ddl.auto” controls the creation of database tables when the service is run. More details on Hibernate customizations can be found here.

To improve performance, the database connection pool can also be tweaked.

In addition to the datasource configuration file, the /src/main/resources/project.properties files contains JDBC configuration. The JDBC driver class and URL need to be set, as do the username and password you plan to use for the web service's database connection.

Publishing the Service

Before a LEA can submit citations to the web service, they will need a username and password. Credentials can be managed via the included command-line interface. To access the interface, run the us.gaaoc.cdx.ws.ltc.util.UserManager class in your unpacked configured war. The command, from the root of the war, would be “java -cp WEB-INF/classes/:WEB-INF/lib/* us.gaaoc.cxd.ws.ltc.util”.

Once a LEA has a username and password, they have a few options to interact with the web service. They can create a client themselves that integrates with their own system, contract the client out to a vendor, or use a client that another LEA has come up with. Regardless, now that they have credentials, they just need the web service URL. The URL is determined by wherever you deployed the web service war. The WSDL URL- handy for those implementing a client- is the same as the web service URL, but with “uc?wsdl” appended.

Integrating with a CMS

When the web service is first run, it will create tables to persist citations and store user credentials. These tables are mostly the product of Hibernate mapping defaults, but have been and can be further customized using the /src/main/resources/wsdl/wsdlBinding-relational.xjb binding file. The binding file is used by Hyperjaxb- a code generation tool that allows easy persistence of Java objects unmarshaled from XML. Hyperjaxb accomplishes this by annotating Java classes created from an XML schema with JPA-specific annotations; therefor, any changes to the WSDL binding file will require regenerating project code. More details on building the project can be found in BUILD.txt. Upon deploying and running the newly generated project, the database tables will be updated to reflect changes in the binding file. Hyperjaxb is fairly young; in particular, it's support of CXF is fairly young. If you need assistance with customizing Hyperjaxb, try the project page or the mailing list.

The easiest way to integrate the LEA to Court service with your CMS would be to maintain two separate sets of tables- the first, the web service's, and the second, the CMS's. Occasionally, citation data from the web service's tables could be imported into your CMS.

A more elegant solution involves tailoring the web service to your CMS's citation tables in your database, and then directly submitting citations from the service into your CMS. This isn't an easy task. Most of it can be accomplished using the Hibernate/Hyperjaxb customization method above, though, depending on CMS, further customization could be required.

